To 227 g of softened butter, 65 g of fructose was added while stirring with a spatula. Slowly, 199 g of flour and 1.26 g of sodium chloride were stirred into the mixture until it became difficult to mix with a spatula. The mixture was kneaded gently until cracks in the surface began to appear after which it was rolled to a thickness of 38 mm and cut into round samples of approximately 51 mm in size. The samples were heated in an oven at 436 K - 450 K for approximately 600 seconds until gold in color.
The bottom trace is a 13C CPMAS spectrum and the top trace is a 13C MAS spectrum. Both spectra were acquired with high power 1H decoupling. This pair of spectra serves to illustrate the different types of information available from each of these techniques. The sample is a mixture of rigid and mobile components. The 13C CPMAS technique detects mainly the more rigid components as it relies on the dipolar coupling between protons and 13C for the cross polarization. The dipolar coupling is averaged to nearly zero for the mobile constituents and therefore they do not appear in the spectrum. The 13C CPMAS spectrum therefore, shows primarily all of the rigid constituents (mainly flour and sugar). The 13C MAS spectrum with high power 1H decoupling shows both rigid and mobile constituents. The resonances from the mobile constituents (mainly butter) have sharp lines while the broader lines from the rigid constituents show up at very low intensity as the sensitivity is not enhanced by cross polarization.Now, you too have enjoyed Patty's delicious shortbread.

This technique has been cleverly applied* to mixtures of molecules immersed in viscous oils where intra-molecular correlations are observed whereas inter-molecular correlations are not observed. The data allow for the observation of the constituent components of complex mixtures.
The resolution profile during a fill may be different for every magnet. For this particular magnet, it is advisable not to collect high resolution data for at least 90 minutes after a nitrogen refill.

The figure consists of simulations of X in an AA'X spin system as a function of JAA' with JAX set at 10 Hz and no coupling between A' and X. Clearly, the spectrum of X is affected by the coupling between A and A'. When JAA' = 0, a first order doublet is observed with a coupling constant of 10 Hz. As JAA' increases, complicated second order multiplets are observed. When JAA' = 50 Hz (or more) a "virtual triplet" with a coupling constant of 5 Hz is observed. This appears to be identical to a 1:2:1 triplet in a first order spectrum with a coupling constant of 1/2 JAX. It is however a second order spectrum and should not be misinterpreted as first order weak coupling. An example of this is illustrated in the figure below.
The figure shows the 13C NMR signals for the ipso and ortho aromatic carbons of 1,2-bis(diphenylphosphino)ethane (DPPE). These carbon atoms are coupled to the nearest phosphorus but not to the remote phosphorus. The two phosphorus atoms are strongly coupled to one another. The ortho carbons appear as a "virtual triplet" and the ipso carbons, a second order multiplet.

where Io is the intensity of B with no saturation of A, and I∞ , is the intensity of B when A is saturated for an infinite time. The saturation transfer effect is useful for situations where the exchange is slow on 




It should also be noted that the overall intensity of the acetone signal decreases with respect to the chloroform signal as a function of the pulse duration due to the width of the 

A sample of toluene and H2O/D2O was prepared. As these two liquids are immiscible, the sample is layered with the less dense toluene on top and the more dense water on the bottom. The bottom trace in the figure shows a conventional 1H NMR spectrum. Since the pulse used to collect the spectrum was a hard 90° pulse with a wide